Brede Batteries

Safe, high performance batteries based on common/cheap materials

BroadBit Batteries Oy October 2023

BroadBit Batteries Overview

LRQA CERTIFIED ISO 9001 - ISO 1400 150 45001

HORIZ N 2020 Tekes BUSINESS European

Company Stats:

Founded: 2015 Location: Espoo, Finland **Turnover:** 500€ Growth: 200% year-on-year **Owners:** Private

Partnerships: Cell mfg. Battery Pack mfg. Distribution Supply Chain 10 (all PhD or MSc) Team:

Investments to date: VASKAWA

2500 k€ private 5000 k€ public

Customers:

Samples, demos and PoCs

+ leading battery, automotive and government customers

Council

Current battery tech limits market

Fossil fuel world = \sim 1 kg batteries per person Electric world = \sim 100 kg batteries per person

~100 B\$ Today

Existing batteries:

Expensive (>150 \$/kWh) Harmful (Environment & Users) Slow to charge (> 2hrs) Low capacity (< 260 Wh/kg) Delicate (0C - 40C) Resource limited (Lithium, Cobalt, Nickel)

>1 T\$ 2030

Novel BroadBit ProLion™ Electrolyte (for all Li-ion Chemistries):

- Safer (no reaction w/ water creating toxic by-products)
- 10% Higher Voltage Limit (charging up to 4.5V vs. 4.2 for std. Li-ion)
- 15°C Higher Temperature Limit (75°C vs. 60 for std. Li-ion)
- 30% Higher Cold Conductivity (3.2 mS/cm vs. 2.4 for std. Li-ion @ -20°C)
- 100°C Higher Ignition Temperature (250°C vs. 150 for std. Li-ion)

- 4x Cycle Life (tested and verified for NMC, LCO, LFP and LMFP)

= 4x lower levelized cost

- Safer (no reaction w/ water creating toxic by-products)
- 10% Higher Voltage Limit (charging up to 4.5V vs. 4.2 for std. Li-ion)
- 15°C Higher Temperature Limit (75°C vs. 60 for std. Li-ion)
- 30% Higher Cold Conductivity (3.2 mS/cm vs. 2.4 for std. Li-ion @ -20°C)
- 100°C Higher Ignition Temperature (250°C vs. 150 for std. Li-ion)

- Safer (no reaction w/ water creating toxic by-products)
- 10% Higher Voltage Limit (charging up to 4.5V vs. 4.2 for std. Li-ion)
- 15°C Higher Temperature Limit (75°C vs. 60 for std. Li-ion)
- 30% Higher Cold Conductivity (3.2 mS/cm vs. 2.4 for std. Li-ion @ -20°C)
- 100°C Higher Ignition Temperature (250°C vs. 150 for std. Li-ion)

- Safer (no reaction w/ water creating toxic by-products)
- 10% Higher Voltage Limit (charging up to 4.5V vs. 4.2 for std. Li-ion)
- 15°C Higher Temperature Limit (75°C vs. 60 for std. Li-ion)
- 30% Higher Cold Conductivity (3.2 mS/cm vs. 2.4 for std. Li-ion @ -20°C)
- 100°C Higher Ignition Temperature (250°C vs. 150 for std. Li-ion)

- Safer (no reaction w/ water creating toxic by-products)
- 10% Higher Voltage Limit (charging up to 4.5V vs. 4.2 for std. Li-ion)
- 15°C Higher Temperature Limit (75°C vs. 60 for std. Li-ion)
- 30% Higher Cold Conductivity (3.2 mS/cm vs. 2.4 for std. Li-ion @ -20°C)
- 100°C Higher Ignition Temperature (250°C vs. 150 for std. Li-ion)

Novel BroadBit ProLion™ Electrolyte (for all Li-ion Chemistries):

- Safer (no reaction w/ water creating toxic by-products)
- 10% Higher Voltage Limit (charging up to 4.5V vs. 4.2 for std. Li-ion)
- **15°C Higher Temperature Limit** (75°C vs. 60 for std. Li-ion)
- 30% Higher Cold Conductivity (3.2 mS/cm vs. 2.4 for std. Li-ion @ -20°C)
- 100°C Higher Ignition Temperature (250°C vs. 150 for std. Li-ion)
- 4x Cycle Life (tested and verified for, e.g., NMC, LCO, LFP and LMFP)

Novel BroadBit Cathode (for Li-ion LFP Replacement):

- 20% Higher Energy (discharge voltage 3.6V vs. 3.2 for Li-LFP)
- More scalable and sustainable (Cobalt and Nickel free)

Areal mass loading (mg/cm ²)	21±5%
Areal capacity (mAh/cm ²)	2,6±5%
Recommended maximum charge voltage	4.2V vs. Li/Li+
Recommended cut-off voltage for discharge	2.5 vs. Li/Li+

ISO 9001 - ISO 1400

Novel BroadBit ProLion™ Electrolyte (for all Li-ion Chemistries):

- Safer (no reaction w/ water creating toxic by-products)
- 10% Higher Voltage Limit (charging up to 4.5V vs. 4.2 for std. Li-ion)
- 15°C Higher Temperature Limit (75°C vs. 60 for std. Li-ion)
- 30% Higher Cold Conductivity (3.2 mS/cm vs. 2.4 for std. Li-ion @ -20°C)
- 100°C Higher Ignition Temperature (250°C vs. 150 for std. Li-ion)
- 4x Cycle Life (tested and verified for, e.g., NMC, LCO, LFP and LMFP)

Novel BroadBit Cathode (for Li-ion LFP Replacement):

- 20% Higher Energy (discharge voltage 3.6V vs. 3.2 for Li-LFP)
- More scalable and sustainable (Cobalt and Nickel free)

Novel BroadBit Cathode + Electrolyte (for Li-ion LFP Replacement):

CERTIFIED

- Safer, More Robust, Longer Life, Higher Energy
- 10% lower cell cost / kWh, 25% lower pack cost / kWh

BroadBit's core battery innovations Better Battery Chemistry

Evolutionary (Li-lon):

Electrolyte: Long-life/Wide-temp Cathode: Co & Ni Free (TRL-9 2023) Revolutionary (Na-Salt): Anode, Cathode, Electrolyte: Rare Earth Metal Free (TRL-5, TRL-9 2024)

Safer, Lower Cost, Higher Performance, Greener, More Scalable

Evolutionary: Water-based: Non-Toxic (TRL-7, TRL-9 2024) **Revolutionary: Dry:** Liquid Free (TRL-6, TRL-9 2024)

Better Battery Manufacturing

CERTIFIED

<u>brodd</u>ił

ISO 9001 - ISO 1400

ISO 9001 - ISO 1400

Fundamentally NOT Sodium-Ion

Sodium-ion batteries use intercalation to store charge

BroadBit uses electrodeposition & crystallization to store charge

Fundamentally NOT Saltwater

Saltwater batteries use H₂O as the electrolyte solvent

BroadBit uses SO₂ as the electrolyte solvent

Fundamentally NOT Molten Salt

Molten salt batteries use melted salt^{*} as the electrolyte BroadBit uses table salt (NaCl) as the active material

BroadBit's Na-Salt Battery Chemistry

$2CI^{-} + SO_2 \leftrightarrow SO_2CI_2 + 2e^{-}$

$2AICI_4 + SO_2 \leftrightarrow 2AICI_3 + SO_2CI_2 + 2e^{-1}$

BroadBit's core battery innovations Better Battery Chemistry

Evolutionary (Li-lon):

Electrolyte: Wide-temp/Hi-Volt Cathode: Co & Ni Free (TRL-9 2023) Revolutionary (Na-Salt): Anode, Cathode, Electrolyte: Rare Earth Metal Free (TRL-5, TRL-9 2024)

Safer, Lower Cost, Higher Performance, Greener, More Scalable

Evolutionary: Water-based: Non-Toxic (TRL-7, TRL-9 2024)

Revolutionary: Dry: Liquid Free (TRL-6, TRL-9 2024)

Better Battery Manufacturing

CERTIFIED

BroadBit has better manufacturing

Cheaper, faster, safer, greener, cathode production

Dry, solvent free, contamination resistant process

Applicable to all of BroadBit's Batteries

CERTIFIED

BroadBit's unique dry mfg. tech

BroadBit Dry Process

CapEx Cost: $15 \text{ M} \in$ $\rightarrow 0.5 \text{ M} \in$ Energy Cost:500 kW $\rightarrow 10 \text{ kW}$ Process Material Cost: $5 \notin /L$ $\rightarrow 0$ Factory Area: 600 m^2 $\rightarrow 10 \text{ m}^2$ Health, Safety & Environment:Flammable/ToxicInert

CERTIFIED

Existing

Wet (Toxic Solvent)

Process

BroadBit sodium batteries are flexible

Using the same core concept, BroadBit's cell chemistry can be optimized for various applications:

CERTIFIED

High energy density

300 Wh/kg vs. 270 for Li-ion e.g., electric vehicles

High energy efficiency 95% efficient vs. 90% for Li-ion e.g., grid storage & stabilization

High power density

5-min charging vs. 30 for Li-ion e.g., starter, drones & power tools

BroadBit sodium batteries are flexible

Using the same core concept, BroadBit's cell chemistry can be optimized for various applications:

CERTIFIED

High power density 5-min charging vs. 30 for Li-ion e.g., starter, drones & power tools

Why chose Energy Storage 1st?

Battery cell demand in 2030 expected to pass 5 TWh - over 1.2 TWh from Stationary Storage

150 45001

BroadBit's durable/efficient chemistry

CERTIFIED

150 45001

BroadBit's simplified battery design

CERTIFIED

0.01 cm thick cathode

0.2 cm thick cathode

BroadBit's simplified battery design

CERTIFIED

>1 cm thick cathode

0.2 cm thick cathode

BroadBit has better manufacturing

Thick cathode cell format Further reduces manufacturing complexity and cost further reducing cost from 50\$/kWh to 30\$/kWh

CERTIFIED

BroadBit has better manufacturing

Thick cathode cell format Further reduces manufacturing complexity and cost further reducing cost from 50\$/kWh to 30\$/kWh

CERTIFIED

BroadBit's thick cathode seasonal cell

CERTIFIED

BroadBit's hybrid Na-Salt battery

- **Current Technology Status**
- Technology validated in cylindrical cells (18650 and larger)
- Years of cycling data
- **Existing Technology Advantage**
- Exceptionally High: Efficiency
 - Power Safety Scalability/Sustainability
- Exceptionally Low: Self discharge

Materials, processing & assembly costs

- Technology Introduction Strategy
 - Already meet ALL key cost/performance parameters for a hybrid daily/seasonal cell

CERTIFIED

• Ready to begin field trials

Hi-efficiency hybrid battery use

World's 1st Hybrid Daily / Seasonal Battery

BroadBit's seasonal battery demo

LRQA CERTIFIED

>90 Patents (>20 already granted)

#	Description	Status	Priority	WO, PCT Numbers (ID)
1 a	ELECTROCHEMICAL SECONDARY CELLS FOR HIGH-POWER BATTERY USE -High power NaCl with NaBF4 or NaBH4	FIN	2015.09.30	WO2017/055678A1, PCT/FI2016/050133 (99077LN)
1 b	ELECTROCHEMICAL SECONDARY CELLS FOR HIGH-ENERGY BATTERY USE -Discharge state assembled, high energy sodium / sodium salt	PCT, EUR, USA, JAP, KOR, <u>CHN</u> , CAN, ISR, RUS, BRA, IND, TWN	2015.09.30	WO2017/055678A1, PCT/FI2016/050133 (99077LN)
2	RECHARGEABLE SODIUM CELLS FOR HIGH ENERGY DENSITY BATTERY USE -Non-aqueous electrolyte, SO $_{\rm 2}$ additive and SEI forming salt	FIN, PCT, EUR, USA, JAP, KOR, CHN, CAN, IND, IND, HNK, TWN, ISR, RUS, AUS, MEX, BRA, PER	2016.03.04	WO2017/149204, PCT/FI2017/050139 (99096LN)
3	ELECTROLYTE FOR SUPERCAPACITOR AND HIGH-POWER BATTERY USE -NaClO4 electrolyte in nitrile solvent	FIN, PCT, TWN, EUR, USA, JAP, KOR, CHN, IND, ISR, AUS, BRA, CAN, MEX, PER, RUS	2017.03.17	WO2018/167365, PCT/FI2018/050182 (105598LN)
4	IMPROVED ELECTROCHEMICAL CELLS FOR HIGH-ENERGY BATTERY USE -Anode current collector for SO $_2$ solvent with C-coated metal/alloy	FIN, PCT, TWN, USA, EUR, <u>JAP</u> , KOR, CHN, IND, IND, RUS, ISR, AUS	2017.08.04	WO2019025663A1, PCT/FI2018/050571 (107989LN)
5	A DISCHARGE STATE ASSEMBLED RECHARGEABLE ELECTROCHEMICAL CELL COMPRIZING METALLIC ELECTRODES -Discharge state assembled metal-metal battery.	FIN, PCT, USA, EUR, JAP, KOR, CHN, IND	2018.09.17	WO2020058572A1, PCT/FI2019/050663 (114412LN)
6	IMPROVED RECHARGEABLE BATTERIES AND PRODUCTION THEREOF -Electrolyte with Carbonate – Nitrile solvent with alkali salt	FIN, PCT, USA, EUR , JAP, KOR, CHN, IND	2018.10.02	WO2020070391A1, PCT/FI2019/050714 (114723KM)
7	IMPROVED ANODE MATERIAL AND ANODE FOR A RECHARGEABLE BATTERY -Composite anode of metal matrix and distributed material	FIN, PCT, USA, <u>EUR</u> , JAP, KOR, CHN, IND	2018.10.10	WO2020084197A1, PCT/Fl2019/050759 (114857LN)
8	AN ELECTRODE MATERIAL AND COMPONENTS THEREFROM AND PROCESSES FOR THE MANUFACTURE THEREOF -Dry blends and pastes and manufacturing methods for batteries	FIN, PCT, USA, EUR, JAP, KOR, CHN, IND, BRA, ISR, TWN	2019.08.13	WO2021028619A1, PCT/FI2020/050525 (119960KM)
9	IMPROVED ELECTROLYTE FOR ELECTROCHEMICAL CELL -An electrolyte comprising a solvent comprising at least two carbonate solvents	FIN, PCT, USA, EUR, CHN, JAP, KOR, TWN, RUS, IND, CAN, ISR, BRA, PER	2020.06.26	WO2021260274A1, PCT/Fl2021/050493 (139177LN)

Applied, Acceptance soon, Accepted, Granted

LRQA CERTIFIED

BroadBit Premises

B319 20.8 v-m2

LABOR

B3 18

LABOR

LRQA CERTIFIED

21.8 v-m2

B320b 21.3 v-m2

LABOR

1.4.v-m

B315

LABOR

19.8 v-m2

B317

TSTO

20.4 v-m2

broddit

Kitchen

B321b

LABOR

18.3 v-m2

B320a 41.8 v-m2

LABOR

B321a

20.4 v-m2 LABOR

B322 15.4 v-mz

Confidential and proprietary

B311a 11.7 v-m2

B311b

9.2 v-m2 TSTO B312

KOKO

30.2 v-m2

B313

6.4 v-m2 1 v-m

Capability: Raw materials to full demos

CERTIFIED

ISO 9001 - ISO 14001

